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Various formulations of the governing equations that describe
three-phase (e.g., water, oil, and gas) flow in porous media, includ-
ing phase, global, and pseudo-global pressure-saturation formula-
tions, are discussed in this paper. Comparisons of these differential
formulations are theoretically and numerically presented for the
firsttime. It is shown that the global pressure-saturation formulation
is the most efficient one from the computational point of view in
the case where the three-phase relative permeability and capillary
pressure curves satisfy a so-called total differential condition, the
pseudo-global formulation is useful when the fractional flow func-
tions of the water and gas phases are close to their respective mean
values, and the phase formulation can be applied generally. © 1997
Academic Press

1. INTRODUCTION

It has been shown that the governing equations describ-
ing two-phase flow in porous media can be written in a
fractional flow formulation, i.e., in terms of a global pres-
sure and saturation [1, 8, 14]. Further, it has been proven
that this fractional flow approach is far more efficient than
the original two-pressure approach from the computational
point of view [5, 11, 13]. The main reasons for this are that
the differential equations written in the fractional flow
formulation formally resemble the governing equations for
single-phase flow, and that efficient numerical schemes can
be devised to take advantage of many physical properties
inherent in the flow equations.

In this paper we discuss various formulations of the
governing equations describing three-phase (e.g., water,
oil, and gas) flow in porous media. We show that, under a
so-called total differential condition on the shape of three-
phase relative permeability and capillary pressure func-
tions, the governing equations can be written in a fractional
flow formulation, i.e., in terms of a global pressure and two
saturations. The case of three-phase flow is quite different

! Partly supported by the Department of Energy under Contract DE-
ACOS-840R21400.

from the case of two-phase flow. The three-phase relative
permeability and capillary pressure curves are far more
complex than the corresponding two-phase curves. It is
the complexity of these three-phase curves that compli-
cates the derivation of the global pressure-saturation form
for the former case. In the two-phase flow, the governing
equations can be written in terms of a global pressure and
saturation without any hypothesis [1, 8, 14]. However, in
the three-phase flow we show that the total differential
condition is necessary and sufficient for the governing
equations to be written in terms of a global pressure and
two saturations. While this condition is not satisfied for all
the existing three-phase curves, it is here verified that it is
satisfied for some simplified models.

For the above reason on the total differential condition,
we also derive other formulations of the governing equa-
tions for three-phase flow in porous media. We show that
these equations can be written in terms of a phase or
pseudo-global pressure and two saturations without any
assumption. However, it turns out that the phase and
pseudo-global pressure-saturation forms are much more
complicated than the global pressure-saturation form. In
particular, the coupling between the pressure and satura-
tion equations in the phase and pseudo-global pressure-
saturation forms is stronger, and thus these equations are
more expensive to solve. This agrees with our theoretical
and numerical observations, which are carried out here for
the first time. The pseudo-global formulation is useful
when the total differential condition is violated and the
fractional flow functions of the water and gas phases are
close to their respective mean values. In this case the pres-
sure equation is more decoupled from the saturation equa-
tions in this formulation than in the phase formulation. In
the general case where these two features are not satisfied,
the phase formulation can be applied.

In the next section we review the governing equations
for three-phase flow in a porous medium. Then the phase,
global, and pseudo-global pressure-saturation forms with
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FORMULATIONS OF THREE-PHASE FLOW

a total velocity and flux are derived in Sections 3-5, respec-
tively. A theoretical comparison of these forms is presented
in Section 6. A comparison between the global and phase
forms, and between the phase and pseudo-global forms
via numerical experiments is given in Section 7; finite ele-
ment and difference methods are applied to solve the par-
tial differential equations. Finally, a concluding remark is
given in Section 8.

2. THE GOVERNING EQUATIONS

The usual equations describing the flow of three immisci-
ble fluids in a porous medium 0 C H? are given by the
mass balance equation and Darcy’s law for each of the
fluid phases [4, 21],

a (0ded
%+V-(paua)=qa, x€0,t>0, (2.1a)
kK.,
Uy = — " (Vpo — pa8), xeQ,t>0, (2.1b)

where ¢ and k are the porosity and absolute permeability
of the porous medium; p,, Sa, P, U, and w, are, respec-
tively, the density, (reduced) saturation, pressure, volumet-
ric velocity, and viscosity of the a-phase; g, is the source/
sink term; k,, is the relative permeability of the a-phase;
and g is the gravitational, downward-pointing, constant
vector. Below a = w, 0, and g denote water, oil, and gas
phases, respectively, for example. In addition to (2.1), we
also have the customary property for the saturations,

Dse=1,

(2.2)

where (and later) 2, = X, ., and define, for notational
convenience, the capillary pressure functions,

Pcao = Pa — Po> (23)

a=w,o,g,
where p.,, = 0, p.. represents the gas phase capillary
pressure, and p.,, is the negative water phase capillary
pressure.

The dependent variables are s,, p,, and u,. In (2.1) and
(2.2), we have utilized the reduced saturations s,, which
are related to the phase saturations §, by

So — gm

2.4)

sa = ~ ~ ) o = w7 07 g7
1- Srw T Sro T Srg

where §,, is the residual saturation of the a-phase, a = w,

o0, g. The porosity ¢ can be a function of space and pres-
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sures, and the absolute permeability k£ can depend on space
and any dependent variables. The density p, and viscosity
M, are functions of pressures. Finally, we assume that the
capillary pressure and relative permeability functions de-
pend upon the saturations s, solely. For notational simplic-
ity, we neglect their dependence on space, which would
then introduce lower-order terms in the partial differential
equations [8, 14]. In the next three sections we shall write
Eqgs. (2.1)—(2.3) in terms of a pressure p and the two satura-
tions s,, and s,.

3. PHASE FORMULATION

In this section the phase pressure-saturation formulation
with a total velocity and flux is derived.

3.1. Phase Formulation with a Total Velocity. For ex-
positional convenience, we introduce the phase mobility
functions

Ao = krol oy, @ =w,0,8,

and the total mobility

A= A,

Also, we define the fractional flow functions

fo = ALdA, a=w,o,g8.

We see that 2, f, = 1.
We use the oil phase pressure as the pressure variable
in this section,

P =Po, (3.1)

and define the total velocity

U= U,
a

(3.2)

Then, use (3.1) and (3.2), carry out the differentiation
indicated in (2.1a), divide by p, in (2.1a), and apply (2.2)
and (2.3) to obtain the differential equations with x € ()
and t > 0,

(3.3a)

<
Il

—kA(Vp — Gy + D, £ VDo),

8¢ 1 apa
V-u o Ea o <qa bs, o Uy Vpa>, (3.3b)
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and

S,

d)a"‘ V- {fau + qu}ﬁ: AB(V(pcBo _pcan) - (pB - pa)g)}

i 1 P4
= —g L 4+ = — — V =
Sa s, pa<qa PSa oy Ua pa>, a=w,g,
34)
where
G)\zgéfapa.

The equations in (3.3) and (3.4) are, respectively, the pres-
sure and saturation equations. The phase velocity is related
to the total velocity by

Uy :fau + kfa% )\ﬁ(v(pcﬁo _pcnzo)

(3.5)
—(ps = p) ),

a=w,o,g.

3.2. Phase Formulation with a Total Flux. In the right-
hand sides of (3.3b) and (3.4) appear the terms u, - Vp,,
which are essentially quadratic in the velocities. To get rid
of these terms, we now introduce a total flux. Toward that
end, set

Aa:krnzpa/l-'(’nn AZZ)\Ba a:W705g9
B

and

Jo = Add A,

a=w,o,g.

The pressure variable is defined as in (3.1), but a total flux
is now introduced:

u= 2 Dol

(3.6)

Then with the same manipulation on (2.1) as above, we
have the pressure and saturation equations with x € Q)
and ¢t > 0:

u= —k)\(Vp - G)\ + Zfavpcaa)’ (373)

a aY o
E%ﬂLV'u:an,

4]

(3.7b)
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and

a(¢£asa) +V- { fou + kf, % Xs(V(Pego = Peao)

_(pﬁ_pa)g)}:qw ax=w,g.

The phase velocity is given by

Uy, = Pll {fau + kfa% /\B(V(pcﬁo _pcoa)
—(ps — pa)g)} a=Ww,0,g.

4. GLOBAL FORMULATION

In this section the global pressure-saturation formulation
with the total velocity and flux is obtained.

4.1. Global Formulation with the Total Velocity. The
phase and total mobilities and the fractional flow func-
tions are defined in the same manner as in Subsection
3.1;1.e.,

A = Kyol thees A=D A, fi=AJA, a=w,0,g
B

To introduce a global pressure, we assume that the frac-
tional flow functions f, depend solely on the satura-
tions s,, and s, (for pressure-dependent functions f,, see
the next subsection), and that there exists a function
(Sw, Sg) = pc(Sw, S) such that

Vp. :fWVpcwo +ngngo- (4'1)

This holds if and only if the following equations are sat-
isfied:

apc apcwo 6pcgo

= + .
s, Ju as,, fe as,, (4.22)
8pc apcwo apcgo
Pe _ + 4.2b
s, fu s fe 05, (4-2b)

A necessary and sufficient condition for existence of a
function p. satisfying (4.2) is

0fw IPewo +a_f;g g0

a_sg as,, dsg  9s,,

afw apcwo +a_fg apcgo

95,0 s, 0Sg

ds,, 0s (4.3)

8
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This condition is referred to as the total differential condi-
tion [8]. When the condition (4.3) is satisfied, the function
P. is determined by

'Dewo cho

Pelsr55) = j{fw<fo> (£0) +£,(£.0)F (50)}015

pro P%a

( Sws §)}d§
(4.4)

+[r {fw( T A A

where we assume that the above integrals are well-defined,
which is always true in practical situations [8]. We now
introduce the global pressure by

P =Do+ De, (4.5)

and the total velocity by

U= u,.
o

(4.6)

Now, use the condition (4.3), the definitions in (4.4)-
(4.6), and the same calculations as in Subsection 3.1 to get
the pressure and saturation equations with x € () and ¢ > 0,

u=—kx(Vp — G)), (4.7a)

op.
V-uz—3—<b+zl(qa—¢saa—’;—ua-vpa>, (4.7b)

at T pa
and
DV {fut + RALT(Pe — pa) — 8} = =5, 22
4.8
+l<q‘“_ s, L - ua-Vpa>’ a=w,g, Y
Pe Jat
where

6a (fﬁ(pﬁ_pﬂ)+fv(pv_pa))gv

o,B,y=w,0,8,a#B,BFy, vy

Finally, the phase velocity is determined by

Uy = fou + kALV(Pe = Dewo) — 64)s a=w,0,8. (4.9)
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4.2. Global Formulation with the Total Flux. As in
Subsection 3.2, to get rid of the quadratic terms in the
velocities in (4.7b), we define

Aa = krapa/Mon w,o,§8,

A=A, a=
B

and

fo=AJA, a=w,o,g.

Also, define the total flux

U=, pally

(4.10)

In the present case we assume that the fractional flow
functions f, depend on the saturations s, and s, and a
pressure p, and that there exists a function (s, ¢, p) —

pL‘(SW, sg’ p) SatiSfying

= fwVPewo + f¢VDego + (4.11)

Pey,
ap
The assumption on the dependence on the pressure p
means that we ignore the error caused by calculating the
density and viscosity functions for the a-phase at p instead
of p,. For details on this error, the reader is referred to
[14] for a similar treatment in the two-phase flow.

With the same argument as in Subsection 4.1, a necessary

and sufficient condition for existence of a function p, satis-
fying (4.11) is (4.3); i.e.,

op.
a_ﬁv pLWO +
dsg 08,

g IPego
dsg  0S,

d cwo d 4 0 cgo
= % P + L Dcg , (4'12)
as,, 0dsg  0s,, 0S8

where p is treated as a parameter. Under the condition
(4.12), the function p. is described by

aljl,WO

Pelsussep) = [ {fw(f 0.p) 72 (£.0)

+[(6,0,p) T Pego (& 0)}
(4.13)

péWU

+ [ {fw(sw, £0) 750 (s ©

pcgo ( . g)}

The global pressure is again defined by

+ fo(sw, & p)

P =Do+ D (4.14)
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FIG. 1. The typical normalized capillary pressure p,,-

Then, as before, we have the pressure and saturation equa-
tions with x € () and ¢ > 0,
u=—kMwVp — G)), (4.15a)

a ar o
Z%JFV'M:Z%,

2%

(4.15b)

and

% +V- {w_lfau + k)\a(v(pc _pcao) - 501)

(4.16)
9p.
_w71 ap GA}:qa’ a:W’g9
where
9p.
(U(Sw,sg,p) = 1 - 5
The phase velocity is computed by
Uo = po’ {w“fau + kA(V(Pe = Peao) = a)
(4.17)
p.
S GA}, a=w,o,g.

ap

4.3. Total Differential Condition. In this subsection we
discuss the total differential condition (4.3). For three-

CHEN AND EWING

phase flow, the classical capillary pressures [19] are nor-
mally used:

pcwo = pcwo(sw)v pcgo = pcgn(sg)- (418)
Typical normalized capillary pressure functions are shown
in Figs. 1 and 2.

Using (4.18), the condition (4.3) reduces to

% apcwo _

dSg ISy,

Yy Pego (4.19)
s, 09sg '

Also, we have the usual definitions of the relative perme-
abilities

kl’W = krw(sw)’ kro = kl’O(SW’sg)7 kl”g =

kg (Sg).

Typical relative permeability curves are given in Figs. 3
and 4. Then equation (4.19) can be simplied further:

% apcwn: ﬂ apcgo
Y as,  9s, £9s,, 0sg

(4.20)

We can construct three-phase relative permeability and
capillary pressure curves which satisfy the condition (4.20).
A simple numerical procedure for constructing these
curves has been described in [8]. Some of the numerical
examples satisfying (4.20) have been compared with the
classical Stone’s model [23], which does not satisfy this
condition, and similar results were obtained. Here we will
see that some simplified three-phase models in fact (or
approximately) satisfy the condition (4.20).

L L L ¢

04 01 02 03 04 05 06 07 08 09 1
s g
FIG. 2. The typical normalized capillary pressure p,,.



FORMULATIONS OF THREE-PHASE FLOW

0.9

0.8

0.7

0.5

0.4r

0.3r

0.1

FIG. 3. Typical water-oil imbibition relative permeabilities k,, (left)
and k,,, (right).

It follows from (4.20) that, if the total mobility A is close
to a constant function, then the total differential condition
holds approximately. We now consider the following cases.
The simplified Corey and Baker models [15, 16] for the
three-phase relative permeabilities have the form

krw = sizw’ km = (1

e _ s
= Sw T Sg) krg = s,

where the e,’s are constants. Substitute them into (4.20)

to see that
SeW e
w {_&Sggl _ sg)e 1}
M LMg

se a cgo
_ _{ew Se -1 _ € (1 - Sg)eol} Dcg .
Mg Ll Mo 95,

a cwo
—fo1- WPewo
Mo aSW

(4.21)

Now, we see that the total differential condition is identi-
cally satisfied in the case of compressible fluids with cross-
relative permeabilities where e, = 1, « = w, 0, g, and unity
viscosities. For other choices of e,, Eq. (4.21) depends on
the definitions of the capillary pressures pey, and peg,,
and can be approximately (if not identically) satisfied by
appropriate choices of parameters.

5. PSEUDO-GLOBAL FORMULATION

The global formulation in Section 4 requires the total
differential condition (4.3) on the shape of three-phase
relative permeability and capillary pressure functions. In
this section we derive a pseudo-global pressure-saturation
formulation, which does not require this condition.
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5.1. Pseudo-global Formulation with the Total Veloc-
ity. Again, the phase and total mobilities and the frac-
tional flow functions are defined as in Subsec tion 3.1:

Aa:km/:uon Azz)\/% fa:/\a/A’ ax=w,o,§.
B

To introduce a pseudo-global pressure, we assume that
the fractional flow functions f, depend solely on the satura-
tions s,, and s, (for pressure-dependent functions f,, see the
next subsection). Also, assume that the capillary pressures
satisfy (4.18). Then it follows from (3.3a) that

u=—kA(Vp, — G, + Efa%vsa). (5.1)

We introduce the mean values

(sw, £)d§,

Fuls) = 1=

Folse) = j *F(&.s)dE

and the pseudo-global pressure

p=pot [" R g

W

ngO (g)

NGRS sl

0.9r / B

07F , _

0.6+ / 1

0.5F / m

0.3 7 4

0.2 ’ B

01t . i

FIG. 4. Typical gas-oil drainage relative permeabilities k,, (left) and
k. (right).
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where s, and s, are such that p.,,(s,.) = 0 and p,

(5g) = 0. Now, by (5.1), we see that

w= kAP~ G+ 3 (- 1) D2, (52)
where f,= 0. Equations (3.3b) and (3.4) remain the
same here.

5.2. Pseudo-global Formulation with the Total Flux.
The phase and total mobilities and the fractional flow func-
tions are again given as in Subsection 3.2:

Ao/A,

e = Kro ol s a=w,o,g8.

A=§Aﬁ,fa=

We now assume that the fractional flow functions f, depend
on the saturations s, and s, and a pressure p. Then the
mean values are accordingly modified by

Fulswp) = (50 & P)IE

% fulE g0 p)E

]_cg(sg’P) = 1 :

and the pseudo-global pressure has the corresponding ex-
pression

dpm €3]

p= Po‘*‘J fW(f p)———dé

dp cgo (é:)

[ Fe ) T de

Apply this definition to (3.7a) to obtain

w=—k\ (wVp -G+ X (f —ﬁ)%m), (53)
where

N R dpcwo(g)
o=1 dp fw(g p)— , —d¢

Swe

dp%o (¢)

é

- [ Ten P

The other two equations (3.7b) and (3.8) remain un-
changed.
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6. THEORETICAL COMPARISON

We first note that if f,, and f, are close to their respective
mean values f,, and fg, then the last term in the right-hand
side of (5.2) and (5.3) can be neglected. In particular, in
the case of compressible fluids with cross-relative
permeabilities and unity viscosities mentioned in Subsec-
tion 4.3, f, = f,, and fe = ]_‘g. Hence, in these cases the
pseudo-global form reduces to the global form. However,
in the general case the pseudo-global form is essentially
the same as the phase form, and the coupling between the
pressure and saturation equations in these two forms has
the same pattern. Here we compare the phase and global
forms; an analogous comparison between the pseudo-
global and global forms can be carried out. The comparison
between the phase and pseudo-global forms will be given
in the next section numerically.

We compare Egs. (3.3) and (3.4) with Egs. (4.7) and
(4.8); the same comparison between Egs. (3.7) and (4.15),
and Egs. (3.8) and (4.16) can be done in the same way.
Note that the “continuity” equations (3.3b) and (4.7b)
have the same form. However, the coupling between the
pressure and saturation equations in (3.3) and (3.4) is
stronger than that between the equations in (4.7) and (4.8).
In particular, Eq. (3.3a) has the gradient of the two capil-
lary pressure functions p,,, and p.,, with different coeffi-
cients, but Eq. (4.7a) in form resembles the Darcy law
for the single-phase flow, and is much simpler. Hence the
computation of the pressure equation (3.3a) by the mixed
finite element methods described in the next section re-
quires the approximation of the two terms

FwVPewo and feVPego-

What is more, while the capillary diffusion terms involve
the gradient of the two capillary pressure functions p.,.
and p., in (3.4) for « = w and g, the calculation of the
diffusion terms requires the resolution of the four linear
systems

(Ao + /\g) )\wVpcwo 5 /\g/\vacgo 5
(/\o + /\w )/\ngcgo .

)\w )\gVP cwo

and

However, in (4.8) for « = w and g the diffusion terms only
require the resolution of the two linear systems

)\wv(pc - pcwa) and Agv(pc - pcgo)-

Therefore, we would expect that Egs. (3.3) and (3.4) are
more expensive from the computational point of view. This
is the case, as shown in the next section.
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We close this section with two remarks. First, in the
uninteresting case in which p.,, = p., = 0, the models
presented in Subsections 3.1, 4.1, and 5.1 (respectively,
Subsections 3.2, 4.2, and 5.2) are the same. Second, bound-
ary conditions imposed for the three-phase flow equations
can be incorporated into the fractional flow formulation
in the same manner as for the two-phase flow [14].

7. NUMERICAL COMPARISON

In this section we compare the previous three formula-
tions for two sets of data. The first set of data is relatively
simple and satisfies the total differential condition (4.3).
Thus in this case we numerically compare the phase and
global formulations. The second set of data is more physi-
cally adequate, but does not satisfy the condition (4.3).
For this set of data we compare the phase and pseudo-
global formulations.

7.1. The First Test.
are defined as

The capillary pressure functions

DPewo = Sw — 1’ pcgo =1- sg-
Recall that p,,,, is the negative water phase capillary pres-

sure. The relative permeability curves are given by

krw:Sw, kro:1 - Sw — Sg, krg:sg-

With these choices, the total differential condition (4.3) is
satisfied from the discussion in Subsection 4.3. Further,
withp = u, = p, =1, = w, 0, g, and § = 0, the mobility
and fractional flow functions become

szfwzswv /\ozfz):l_sw_sg’
A=f,=s,  A=1.

Thus the function p, is given by
Pc= _%(1 - S%v + Sg’)

For the present set of data, the system in (3.3) and (3.4)
(respectively, (4.7) and (4.8)) is the same as thatin (3.7) and
(3.8) (respectively, (4.15) and (4.16)). Finally, the domain ()
is the unit cube Q = (0, 1)*, and a no-flow boundary condi-
tion for each phase is taken,

u, v=>0, a=w,0,8,x€ d,1t>0, (7.1)

where v is the outer unit normal to the boundary 9€) of ().

369

TABLE I

Convergence of p,, for the Phase System in Test One

1/h L>-error L>-order
10 0.10356 —

20 0.05147 1.01
40 0.02533 1.02

In the phase pressure-saturation form, Egs. (3.3) and
(3.4) now reduce to (with x € Q and ¢ > 0)

u=—k(Vp + 5,Vs, — 5,Vs,), (7.2a)
V-u=gq, (7.2b)
and
% + V- {s,u — ks, (1 — 5,)Vs,, + 5,V )} = g, (7.32)
0,
% + V- {sou + ks (1 — 54)Vs, +5,Vs,)} = g, (7.3b)

where ¢ = 2,g,. Similarly, in the global pressure-
saturation form the pressure equation (4.7) becomes

(7.4a)
(7.4b)

u=—kVp,

V-u=gq;
the saturation equations are the same as in (7.3) for the
present set of data. Recall that the p in (7.2a) is the oil
phase pressure, while the p in (7.4a) is the global pressure

defined in (4.5). Also, it follows from (7.1) that the bound-
ary condition for (7.2) and (7.4) is

u-v=_0, x€E i, t>0, (7.5)

and that the boundary conditions for (7.3a) and (7.3b) are

x€0Q,t>0, (7.6a)
x€0Q,t>0. (7.6b)

{ks,, (1 — 5, ) Vs, +5,Vse )} - v=0,
{ksg (1 —54)Vs, +5,Vs,)} - v=0,

TABLE 11

Convergence of s, for the Phase System in Test One

1/h L>-error L~-order
10 0.23302 —

20 0.11875 0.97
40 0.05950 0.99
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TABLE III
Convergence of p,, for the Global System in Test One

CHEN AND EWING

TABLE V
CPU Times up to ¢ = 1 in Test One

1/h L>-error L>-order 1/h CPU-B CPU-P
10 0.10402 — 10 0.51 0.93
20 0.05208 1.00 20 4.02 7.39
40 0.02576 1.02 40 16.08 29.53

For the present simple problem, (7.4) implies that the
pressure equation is completely decoupled from the satura-
tion equations in the global pressure-saturation form, and
thus it can be independently computed and the resulting
total velocity can be used by the saturation equations later.
In the phase pressure-saturation form, the system in Egs.
(7.2) and (7.3) is solved sequentially. An approximation
of u is first obtained at time level ¢+ = ¢ from solution of
Eq. (7.2) with the saturations s,, and s, evaluated at the
previous time level ¢ = 1. Then, using the current approx-
imation for u, approximations of s, and s, are obtained
at t = t" by using (7.3a) and (7.3b) simultaneously. The
saturation equations are solved here by the classical up-
weighting finite difference scheme, while the pressure
equation is solved by a mixed finite element method. We
assume that the reader is familiar with the former scheme;
the latter method will be reviewed in the Appendix.

Uniform partitions of () into rectangular parallelepipeds
with the space step h = Ax = Ay = Az are taken. The
time differentiation terms in (7.3) are discretized with the
backward Euler scheme, and the time step is assumed to
be proportional to the space step: At = kh, where « is the
proportionality constant. A cell-centered finite difference
method with the seven point stencil is used for the solution
of the saturation equations, while a mixed finite element
method with the use of the Raviart-Thomas—Nedelec
mixed space [22,20] of lowest-order over rectangular paral-
lelepipeds is applied to the solution of the pressure equa-
tions (see the Appendix). Tables I-1V describe the errors
and convergence orders in the L”-norm for the pressure
and saturation at ¢ = 1 for the phase and global pressure-
saturation differential systems, where s, is the approxima-
tion to the water saturation. In Table V, the CPU times
in minutes for solving the whole pressure-saturation system

TABLE IV

Convergence of s;, for the Global System in Test One

over the given mesh up to time ¢ = 1 from the initial time
t = 0 are presented. CPU-P denotes the CPU times for
the phase system, while CPU-B indicates those for the
global system. All experiments are carried out on a Sun
workstation.

It follows from Tables I-IV that the numerical results
agree with the theoretical error prediction O(Ar + h) for
both systems. However, the CPU times required for the
solution of the phase pressure-saturation system almost
double those for the global system. This shows that the
latter system can be more easily solved, and agrees with
our theoretical observation in Section 6. Lots of time is
spent on the coupling between the pressure and saturation
equations in the former system.

7.2. The Second Test. In the second example we test
a more physically adequate set of data for the comparison
between the phase and pseudo-global formulations. The
relative permeability curves are given by the modified Cor-
ey’s model [15]

k,, = 0.21sL3,
ko = 0.71s25(1 — (1 — s,)%),
Ky = 525(1 — (1 — 50)>%),

(1.7)

where the reduced saturations s, are related to the phase
saturations §, by (2.4) with the residual saturations §,,
given by

5 = 025,
50 = 0.35,
5, = 0.05.
TABLE VI

Convergence of p, for the Phase System in Test Two

1/h L”-error L>-order 1/h L>-error L~-order
10 0.19847 — 10 0.31076 —
20 0.09982 0.99 20 0.17043 0.87
40 0.04977 1.00 40 0.08821 0.95
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TABLE VII

Convergence of s;, for the Phase System in Test Two
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TABLE IX

Convergence of s;, for the Pseudo-global System in Test Two

1/h L>-error L>-order 1/h L>-error L>-order
10 0.49217 — 10 0.28397 —
20 0.25570 0.94 20 0.15026 0.92
40 0.13052 0.97 40 0.07911 0.93

The capillary pressure functions are determined by

Pewo = _aw(1 - sw)bw’

Pego = (1 = 80)Ps(ay (s — 1)% + myp),

(1.8)

where the constants a,,, etc., depend on the residual satura-
tions. The water and oil densities are taken to be 1000 kg/
m?® and 1200 kg/m?, respectively, while the gas density is
chosen as

Pg = Pog <1 + If_g> ’ (7.9)

0g

where py, is the density of the gas phase at the reference
pressure pg,. The constants in (7.8) and (7.9) are not im-
portant for the present test, and are chosen randomly.
Finally, the viscosities of the water, oil, and gas phases are
1 cp, 0.9 cp, and 0.8 cp, respectively, and ¢ and g are
the same as in the first example. The no-flow boundary
condition for each phase in (7.1) is also exploited here.

The comparison is here done between the system given
by (3.3) and (3.4) and that given by (5.2), (3.3b), and (3.4);
similar results have been observed for the system in (3.7)
and (3.8) and that in (5.3), (3.7b), and (3.8). Note that, in
the present situation, the pressure equations are parabolic,
and are not decoupled from their saturation equations.
These are the differences between the two test cases. An-
other difference is, as mentioned above, that the functions
in (7.7) and (7.8) do not satisfy the condition (4.3).

The same discretization techniques and set of numerical
data in the first example are used here. The integrals in
the pseudo-global system are computed numerically by a
scheme which is consistent with the used discretization

TABLE VIII

Convergence of p, for the Pseudo-global System in Test Two

schemes in terms of convergence order. The convergence
results and CPU times are displayed in Tables VI-X for
the present comparison. The convergence results have the
same performance as in the first example. However, it
turns out that the pseudo-global system takes more time,
which is indicated in Table X by CPU-S. The reason for this
is that the coupling between the pressure and saturation
equations in the phase and pseudo-global forms has the
same pattern, but extra time is needed to handle the numer-
ical integrals in the latter form. As mentioned before, in
the case where f,, and f are close to their respective mean
values f,, and f,, the pseudo-global form is very useful.
For, in this case, this form approximates the global form,
and thus the pressure equation is more decoupled from
the saturation equations. We have observed this in our
numerical experiments (not reported here).

We end with two remarks. First, the transport term in
the saturation equations is governed by the total velocity
(respectively, flux) u. Thus accurate numerical simulations
require an accurate approximation for u. The mixed finite
element method is here used to approximate u and p simul-
taneously, and produces an accurate velocity [18]. Second,
due to their convection-dominated feature, more efficient
approximate procedures should be used to solve the satura-
tion equations. However, the interest here is in the compar-
ison between the two differential systems; the simple finite
difference scheme is accurate for this purpose [12].

8. CONCLUDING REMARK

The phase, pseudo-global, and global pressure-satura-
tion differential systems have been established for the
three-phase fluid flow in porous media. Comparisons be-
tween these systems have been carried out both theoreti-

TABLE X
CPU Times up to t = 1 in Test Two

1/h L>-error L>-order 1/h CPU-S CPU-P
10 0.14921 — 10 2.33 1.87
20 0.07840 0.93 20 18.46 14.82
40 0.03923 1.00 40 73.78 59.26
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cally and numerically. The global differential system is far
more efficient than the phase and pseudo-global systems
from the computational point of view, and also more suit-
able for mathematical analysis. The advantage of the global
form can be more obviously seen in the case of incompress-
ible flow and one-space dimension. For, in this case, the
global pressure equation can be analytically solved. The
weakness of the global formulation is the need of the satis-
faction of the total differential condition by the three-
phase relative permeability and capillary pressure curves.
In general, the phase formulation is useful. However, if
the fractional flow functions of the water and gas phases
are close to their respective mean values, the pseudo-global
system formulation is more useful.

APPENDIX: REMARKS ON A MIXED METHOD

We rewrite Egs. (7.4) and (7.5) as

u=—kVp, x €, (A.1a)
V-u=gq, x €, (A.1b)
u-v=_0, x € 9Q. (A.lc)

For compatibility, g(x) needs to satisfy the condition
f 0 q(x)dx = 0.

Define the spaces

LX(Q) = {w : fﬂ |w(x)Pdx < 00},
H(div: Q) = {v € (LAQ))*:V - v € LA(Q))},
W ={we LXQ): j L w(x)dx = 0},

V={ve H(div;Q):v-v=00ndQ}.

Then the mixed form of (A.l1) for the pair (u, p) €
VX Wis

(V-u,w)=(q,w),
(k'u,v) = (p,V-v) =0,

VweEW, (A2a)
YoeV, (A2b)

where (-, ©) is the L*(Q) or (L*(Q))® inner product, as
appropriate. This system has a unique solution [7].

For 0 < h <1, let ¢, be a partition of () into rectangular
parallelepipeds. In ¢, we need that adjacent elements

CHEN AND EWING

completely share their common face. Then we introduce
the Raviart-Thomas—Nedelec mixed space [22, 20] of
lowest-order

Vi={vEV:vlg
= (ak + a¥x,a} + aty,ay + a%z),d: ER,VE € &,},

Then the mixed finite element solution of (A.2) is
(un, pr) € V, X W, satisfying

Vw € Wh7
Yv € Vh.

(A.3a)
(A.3b)

(V- up, w) = (g, w),
(k™up,v) = (pn, V- 0) =0,

Again, this system has a unique solution [7].

The linear system arising from (A.3) is a saddle point
problem [7], which can be expensive to solve. One of useful
numerical methods for solving this saddle point problem
is the inexact Uzawa algorithm (see, e.g., [0, 17]). A more
efficient approach was suggested by means of a nonmixed
formulation. Namely, it has been shown that the mixed
finite element method is equivalent to a modification of a
nonconforming Galerkin method [2, 3, 9, 10]. The noncon-
forming method yields a symmetric and positive definite
problem, which can be more easily solved.
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